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Summary: Trf-substituted enamines are oxidized to a-hydroxy ketones by N-sulfonyloxazirkfines while di-substituted 

enamines are oxidized to a-amino ketones. A unified mechanism for the formation of both a-hydroxy 

ketones and a-amino ketones is proposed. 

The a-hydroxy carbonyl array (R&(OH)C(O)Z) is a common feature of many biologically important molecules and a 

key intermediate in the synthesis of natural products. l-3 In connection with our interest in the synthesis of this important 

structural unit we have examined the oxidation of enamines 1, using N-sulfonyloxaziridines 4 and (+)-5, as a route to 

optically active a-hydroxy ketones. lg4 Enamines are well known to be oxkfiied by various reagents (03,5 peroxides,697 

thallium hiacetates) to a-hydroxy ketones in moderate to good yields. In this context we describe a novel and synthetically 

useful oxidation of trf-substituted enamines to a-hydroxy ketones 3 and of di-substituted enamines to a-amino ketones 2 

(Scheme 1). 
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Typically, 0.3 mmof of the enamines 1, in 1 mL of solvent, were oxfdized by addition of an equivalent amount of 

oxaziridines 4 or (+)-5 in 1 mL of solvent. The enamines were prepared by standard methods using TiC14.g Products 

were isolated by removal of the solvent and extraction with n-pentane/ether to separate 2 and 3 from the more polar 
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sulfonimines 6 and (-)-7. In the case of the a-hydroxy ketones 3, 5% HCI solution was added prior to removal of solvent 

and extraction into n-pentane/ether. Products were isolated by preparative TLC and identified by comparison of their 

spectral properties (‘H, 13C NMR, MS, IF?) with values recorded in the literature. Oxaziridine 4 was generally consumed 

within a few minutes on treatment with 1 as indicated by the disappearance of the oxaziridine CH proton at 6 5.6 ppm and 

the appearance of the CH sulfonimine proton in 6 at S 9.0 ppm. However, the enamine of P-methyl-1-tetralone was found 

to react with 4b much faster than with 4a (Table, entry 13). Oxidation using (+)-5 proceeded considerably slower with 

more hindered enamines (compare entries 6 and 12 in Table). In the case of the pyrrolidine enamine of 2-methyl-i- 

tetralone there was no reaction even after 30 hr (entry 14). These results are summarized in the Table. 

Oxidation of di-substituted enamines 1 (R2=H) with 4 or (+)-5 gave a-amino ketones 2. The expected a-hydroxy 

ketones 3 could not be detected by GLC. When the oxidation of 1 (R2=H) was carried out with optically active (+)- 

(camphorylsuffonyl)oxaziridine (5) chirality transfer was extremely low affording racemic 2 (entries 2, 6 and 7). Changes in 

the reaction parameters, solvent, temperature and time all failed to alter the product distribution or the optical activity of the 

products. 

Alternatively, oxidation of tri-substituted enamines 1 (R2#H) with 4 or (+)-5 gave only the expected a-hydroxy 

ketones 3. The corresponding a-amino ketones 2 were not detected. Although NMR analysis of the reaction mixture 

revealed that the oxaziridines were completely consumed within a few minutes, a considerable amount of the reaction 

product could not be accounted for, particularly when the solvent was chloroform (entries 8 and 10). Longer reaction 

times resulted in reduced yields. We observed, as did Hoffman7 in his studies of enamine oxidations to a-hydroxy 

ketones using (p-nitrophenyl)sulfonyI peroxide, that addition of 2% methanol as co-solvent resulted in improved yields 

(entries 9 and 11). 

A plausible mechanism for the oxidation of 1 to 2 and 3 (Scheme) involves the initial attack of the oxaziridine at 

the enamine double bond to give a-amino epoxide 8. This is analogous to the oxidation of silyl enol ethers by 4 to a- 

siloxy epoxides 8 (CdHsN=OTMS). lo Indeed, a-amino epoxides have been invoked as intermediates in the oxidation of 

enaminestr and in the rearrangement of a-halo ketones and amines to a-amino ketones. 12J3 Furthermore, the synthesis 

of an a-amino epoxide has been reported. ‘2 However, our attempts to detect 8 by NMR have been unsuccessful. 

Alternatively, zwittetfon 9, formed directly or via rearrangement of 8, should give on hydrolysis 3.14 When R2 is H the en01 

amine intermediate 10 wouki afford 2. Not only could 10 explain why only di-substituted enamines 1 (R2=H) give 2, but 

this would also be consistent with the lack of chirality transfer observed using N-sulfonyloxaziridine (+)-5. Addition Of a 

nucleophile, such as methanol, will trap 8 or 9 minimizing side reactions and increasing the yields of the products.7 

However, addition of methanol did not alter the outcome for oxidation of 1, R2=H (entries 4 and 5), most likely reflecting 

the greater rate of rearrangement to 10. 
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Table: Oxidation of Enamlnes using N-Sulfonyloxarirldlnes 4 and (+)-5 at 25 OC. 

Enamine 
FL’ ( Fi*, R3 

Oxaziridine Solventa time Products 

(hr) % (Isolated Yield) [GLC yietdjb 

1 
2 

3 
4 

: 

7 

8 
9 
10 
11 
12 

13 
14 

PhEPh 

phECH3 

ph 

C”3 

W’sN \ \ CH3 co ‘/ 

(+,-2 
4a 
4a 

(+,ia 

(+I-5 CDCl3 30.0 2 (66)f 

48 
48 
48 

(+)-Za 

(+,Psb 

CDCl3 0.5 2 (55)C 
CDCl3 0.5 2 (53) 

CD’& 
CDCl$vteOH 
THF/MeOHe 
CDCl3 

CDCb 0.08 3 [SO]9 
CDCh/MeOH 0.08 3 (69) j811 
THF 0.25 3 j811 
THFiMeCti 0.25 3 (79) I921 
THFMeCtt 30.0 3 WI 

THFMeDH 0.5 3 (75) [851h 
THFR&!CH 30.0 No Reaction 

0.5 2 (54)d 
0.5 2 (58) 

A:: x I:;; 

a) As noted 2% by volume of methanol was used a cosolvent. b) GLC analysis using a 8 ft. x l/8 ” 3% OV-17 on 80/100 
Supelcoport column. The analyses were determined by comparison of peak areas on standard solutions of the reaction 
products. c) Sasaki, T.; Kanematsu, K.; Minamoto. K.; Fujimura, H., Chem. Ph. Bull., 1964, 191. d) Klemmenser, P.; 
Schroll, G.; Lawesson, S. O., Ark. Kemi, 1967,405. e) Diluted to 15 mL with THF and carried out at 0 OC . I) See ref. 7b. 
g) See Ref. 10. h) See Ref. 4b. 

To date our attempts to prepare optically active enamines of 2-methyl-1-tetralone with several optically active 

secondary amines have been unsuccessful. However, chiral imines in tautomeric equilibrium with their tri-substituted 

enamines, have been reported to undergo alkylation with high stereoselecttvities.16 Indeed, treatment of (+)-11” with 

4b gave, after 7 days, a 46% isolated yield of optically active (-)-2-hydroxy-2-methyttetralone in 16% ee.ls 



4368 

In summary, methodology for the preparation of tetra-substituted a-hydroxy ketones 3 by oxidation of tri- 

substituted enamines with N-sulfonyloxaziridines is described and is potentially useful in the synthesis of optically active 

a-hydroxy ketones.’ Oi-substituted enamines are oxidized by these reagents to a-amino ketones 2 in good yields. 
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